Safe Harbor and Forward-Looking Statements

This presentation contains forward-looking statements including, but not limited to, statements related to our preclinical and clinical product candidates, including GRANITE, SLATE, CORAL, and HIV programs. All statements other than statements of historical facts contained in this presentation, including statements regarding the timing of immunogenicity and clinical data for GRANITE, SLATE, and CORAL, the timing for Gilead’s initiation of a Phase 1 in HIV, collaborations surrounding our infectious disease programs, future results of operations and financial position, business strategy, prospective products, availability of funding, clinical trial results, product approvals and regulatory pathways, timing and likelihood of success, plans and objectives of management for future operations, future results of current and anticipated products, and our ability to create value are forward-looking statements. Because forward-looking statements are inherently subject to risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. The events and circumstances reflected in our forward-looking statements may not be achieved or occur and actual results could differ materially from those projected in the forward-looking statements.

Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise. For a further description of the risks and uncertainties that could cause actual results to differ from those expressed in these forward-looking statements, as well as risks relating to the business of the company in general, see Gritstone’s periodic filings with the Securities and Exchange Commission (the “SEC”), including its Quarterly Report filed on August 5, 2021, and any current and periodic reports filed thereafter.
Gritstone: Taking Immunotherapy to the Next Level

Leveraging proprietary target identification & vaccine platform technologies

1. Proprietary Synergistic Technologies + in-house manufacturing capabilities

2. Differentiated and Expansive Pipeline
 - EDGE™ AI Antigen Discovery Platform
 - Vaccine Delivery Platforms: viral & self-amplifying mRNA

3. Premier Government and Industry Partnerships

4. Multiple Near-Term Catalysts

- CORAL (COVID)
- SLATE (off-the-shelf neoantigen)
- GRANITE (individualized neoantigen)

Cash Position as of June 30, 2021
~$176.2M*

*does not include $55M PIPE transaction in Sept 2021
Our 2-Prong Platform Approach Can Generate Distinct Product Pipelines

Novel approach rests on optimizing two key pillars

01 Target Identification

Gritstone EDGE™ AI platform

Oncology Pipeline

02 Antigen Delivery

Vaccine platform able to generate antibodies, CD4+ and CD8+ T cells

Infectious Disease Pipeline
<table>
<thead>
<tr>
<th>Program</th>
<th>Target</th>
<th>Indication</th>
<th>Pre-clinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Milestones</th>
<th>Commercial Rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q4 2021 data</td>
<td>gritstone</td>
</tr>
<tr>
<td>SARS-CoV-2 Spike + TCE*</td>
<td>COVID-19 naïve & booster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SARS-CoV-2 Spike + TCE*</td>
<td>COVID-19 booster (60+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SARS-CoV-2 Spike + TCE*</td>
<td>COVID-19 Immunocompromised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SARS-CoV-2 Spike + TCE*</td>
<td>COVID-19 in South Africa naïve, convalescent, HIV+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV</td>
<td></td>
<td>HIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
<td>GILEAD</td>
</tr>
<tr>
<td>GRANITE</td>
<td></td>
<td>Individualized neoantigen</td>
<td>Early Stage & Advanced Solid Tumors</td>
<td></td>
<td></td>
<td></td>
<td>Q3 2021 Data presented</td>
<td>gritstone</td>
</tr>
<tr>
<td>Individualized neoantigen</td>
<td>MSS-CRC (1L maintenance)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1H 2022 Trial initiation</td>
<td>gritstone</td>
</tr>
<tr>
<td>Individualized neoantigen</td>
<td>MSS-CRC (adjuvant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1H 2022 Trial initiation</td>
<td>gritstone</td>
</tr>
<tr>
<td>SLATE</td>
<td></td>
<td>p53, KRAS Advanced Solid Tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q3 2021 Data presented</td>
<td>gritstone</td>
</tr>
<tr>
<td>Shared Neoantigens</td>
<td>KRASmut Solid Tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mid 2022 Data</td>
<td>gritstone</td>
</tr>
<tr>
<td>Shared Neoantigens</td>
<td>Unnamed Solid Tumor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q4 2021 Submit IND</td>
<td>gritstone</td>
</tr>
</tbody>
</table>

*CORAL next generation COVID-19 vaccines include antigens to the spike protein and additional T cell epitopes (TCE) to the SARS-CoV-2 virus; there are 4 different investigational COVID-19 product candidates testing/planned in clinical trials with various antigenic cassettes.
Gritstone’s EDGE™ Leads The Field in T Cell Target Identification

Proven, patented¹ and published in Nature Biotechnology²

Gritstone EDGE™
AI model for antigen prediction

>70% Positive Predictive Value

AI network model optimizes antigens by considering:

1. Which mutation to use as an antigen
 - Mutation
 - DNA
 - Neoantigen

2. Type of immune cells that can recognize the antigen
 - VS

3. Type of immune response triggered by the antigen

¹ Yelensky et al., Neoantigen identification, manufacture and use, US 10,055,540
² Bulik-Sullivan et al., Nature Biotech., 2018
Infectious Disease

COVID-19 (CORAL)

HIV
Milestones

- **Q3 2021** – GRTS sponsored booster trial in 60+ (1st subjects dosed)
- **Q4 2021** – GRTS sponsored trial initiation in immunocompromised individuals
- **Q4 2021** – Preliminary clinical data for NIAID sponsored study
- **Q1 2022** – Preliminary data from GRTS booster trial

Key Collaborations

- Bill & Melinda Gates Foundation
- National Institutes for Allergy and Infectious Disease (NIAID)
- Coalition for Epidemic Preparedness Innovations (CEPI)
- La Jolla Institute for Immunology (LJI) – license agreement

MOA

- Antigens to the spike protein and additional SARS-CoV-2 proteins delivered as a vaccine using a ChAdV and/or self amplifying mRNA (SAM) vector

Differentiation

- Antigens to the other viral proteins in addition to the spike optimized for immunogenicity
- Only regimen targeting Spike protein and T cell epitopes (TCEs) for increased immunogenicity
- SAM further enhances antigen delivery for more robust and persistent immune responses
- Potential for stable refrigeration

Clinical opportunities

- Booster, especially for vulnerable populations (e.g. immunocompromised, elderly)
- Potential to address multiple variants
- Self-amplifying mRNA vaccine platform with the potential for stable refrigeration

CORAL Highlights

COVID 19 vaccine program targeting spike protein + T cell Epitopes
Gritstone’s Approach has the Potential to Address 1st Generation Limitations

1st Generation Limitations

- May have less protection for the elderly against severe disease
- Protection may not be durable
- Protection may wane with emergence of mutations/variants of concern

2nd Generation Solution

- Maximize magnitude of cytotoxic CD8 T cell responses for more effective protection
- SAM delivery may be dose sparing with potential to drive higher, more durable nAb and TCE response
- Deliver broader set of viral antigens to minimize impact of mutations/variants of concern
CD8 T Cells Are A 2nd Layer of Protection when nAb Protection Wanes

Virus can infect and replicate if antibody neutralization is incomplete due to waning titer or mutations.

Memory CD8 T cells act as second line of defense, expanding rapidly upon virus infection to clear virus from infected cells and limit organ damage.
CORAL Uses Multiple Antigens to Maximize CD8 T Cell Responses

1st generation COVID vaccines:
Spike protein only

- Neutralizing antibodies (S)
- Limited CD8 T cell responses against S across patients
- No CD8 response against other highly expressed genes

2nd generation Gritstone vaccine:
Spike + T cell Epitopes

- Neutralizing antibodies (S)
- Strong CD8 T cell response in most individuals against S and other highly expressed viral genes
Gritstone’s Differentiated Platform Drives High nAb Levels and TCEs

Robust neutralizing antibody response confirmed in non-human primates (NHPs)
Heterologous Platform Drives Potent and Broad T Cell Responses

Robust immune response to spike protein confirmed in non-human primates (NHPs)

Total Spike T cell Response

Breadth T cell response across Spike antigen

<table>
<thead>
<tr>
<th>Spike peptide pool</th>
<th>Peak anti-Spike T cells per 10^6 cells</th>
<th>(N=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protective In SIV

Protective In Flu

Gritstone
CORAL Clinical Development Strategy

Advance our second-generation approach* as a booster for both existing vaccines, especially in vulnerable populations (elderly, immunocompromised) and to provide broad immunity to emerging variants of concern.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Pre-clinical</th>
<th>Phase 1</th>
<th>Expected Enrollment</th>
<th>Milestones</th>
<th>Collaborator</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVID-19 naïve & booster (US only)</td>
<td></td>
<td></td>
<td>N=147</td>
<td>Q4 2021 data</td>
<td>NIH NIAID</td>
</tr>
<tr>
<td>COVID-19 booster (60+)</td>
<td></td>
<td></td>
<td>N=20</td>
<td>Q1 2022 data</td>
<td>gritstone</td>
</tr>
<tr>
<td>COVID-19 Immunocompromised</td>
<td></td>
<td></td>
<td>N=20</td>
<td>Q4 2021 Trial initiation</td>
<td>gritstone</td>
</tr>
<tr>
<td>COVID-19 in South Africa naïve, convalescent, HIV+</td>
<td></td>
<td></td>
<td>N=240</td>
<td>Q4 2021 Trial initiation</td>
<td>CEPI</td>
</tr>
</tbody>
</table>

*Gritstone has 4 different investigational COVID-19 product candidates testing/planned in clinical trials with various antigenic cassettes.
Gritstone's Platform is Highly Adaptable to Protect Against Variants

Coronavirus evolution may give rise to additional pandemic strains

- SARS
- MERS
- COVID-19
- Emerging Variants of Concern
Collaboration with Gilead Under their HIV Cure Program to Research and Develop Vaccine-based HIV Immunotherapy Treatment

Deal value of up to $785 million plus royalties

- Gilead and Gritstone will develop an HIV-specific therapeutic vaccine
 - Gritstone’s vaccine platform technology: adenoviral and self-amplifying RNA vectors

- Based on preclinical data demonstrating strong, durable and broad anti-SIV CD8+ T cell responses and T cell memory data

- Gilead responsible for conducting Phase 1 study
 - Option to obtain an exclusive license to develop and commercialize beyond Phase 1

- $60 million upfront; total deal value of up to $785 million
 - $60 million upfront: $30 million cash and $30 million in equity at a premium
 - Up to an additional $725 million if option exercised and certain clinical, regulatory and commercial milestones are achieved
 - Mid single-digit to low double-digit tiered royalties on net sales upon commercialization
Neoantigen Derived Cancer Immunotherapy

Individualized and “Off the Shelf”
Therapeutic Hypothesis: Many Solid Tumors Contain Neoantigens, but May Require Vaccine-Induction of Neoantigen-Specific CD8+ T Cells for Successful Immunotherapy

This approach could enable immunotherapy in tumors where anti-PD-(L)1 antibodies are ineffective

High Tumor Mutation Burden

- High PD-L1
 - Exhausted T cells
 - Anti-PD-(L)1 mAb
 - Re-activated T cells
 - Melanoma MSI high tumors

Low Tumor Mutation Burden

- Low PD-L1
 - Tumor cells
 - Anti-PD-(L)1 mAb
 - Neoantigen-specific immunotherapy
 - de novo T cells
 - Microsatellite-stable Colorectal Cancer Gastroesophageal adenocarcinoma

Prime

- ChAdV* Vector

Boosts

- Self-Amplifying mRNA

Chimpanzee Adenovirus
Gritstone’s Prime/Boost Immunization Platform is Designed to Drive Durable, Potent T-Cell Responses

Heterologous Prime-Boost
Vector switch drives durable, high yield T-cell response

Gritstone’s Prime-Boost Immunotherapy Platform

Prime: ChAdV Vector
Generates rapid and substantial initial T-cell response (incl. CD8+) and Ab (where relevant)

Boost: SAM Vector
Drives profound antigen-specific T-cell response (and Ab response)

Number of Antigen Specific T cells

Viral polymerase
Self-Amplifying mRNA
GRANITE and SLATE Phase 1/2 Studies Support Advancement into Randomized Phase 2 Trials

GRANITE & SLATE programs demonstrated promising efficacy with tolerable safety across solid tumors

GRANITE individualized
- Colorectal (MSS)
- Lung
- Gastric

Well-tolerated with TRAEs indicative of immune response

SLATE off-the-shelf
- High Frequency KRAS^{mut}
- Lung
- Pancreatic
- Colorectal (MSS)
- Mutation positive tumors

Early signs of clinical efficacy

Early molecular responses

Optimized dosing strategy

TRAEs=treatment related adverse events
GRANITE Highlights

Individualized Neoantigen Directed Immunotherapy

MOA
- Personalized tumor specific neoantigens delivered as a vaccine using an adenoviral vector priming (ChAdV) followed by a self amplifying mRNA (SAM) vector boost

Differentiation
- Individualized tumor vaccine with neoantigen optimized for immunogenicity
- ChAdV & SAM delivery increases immunogenicity; SAM enhances antigen delivery for more robust and persistent immune responses

Clinical opportunities
- Early stage and advanced solid tumors with initial focus on MSS-CRC which does not respond to CPIs
- MSS-CRC – FDA fast track designation

Efficacy
- Robust & persistent CD8+ T cells to tumor-specific neoantigens
- 44% molecular response as measured by ctDNA reduction
- Lesion shrinkage

Safety & Tolerability
- Vaccines are well tolerated; no dose limiting toxicities (DLTs)
- TRAEs indicative of an immune response

Clinical Development Strategy/Milestones
- 1H 2022 – Randomized Ph2 trial initiations in MSS-CRC (1L maintenance & adjuvant setting)
- Single protocol phase 2/3 study in 1L maintenance MSS-CRC has registrational intent and has been discussed with FDA

CPIs=checkpoint inhibitors
Phase 1/2 Study Evaluating the Safety, Immunogenicity, and Clinical Activity of GRANITE in Combination with Checkpoint Blockade

Phase 1

Dose Escalation
N=14

<table>
<thead>
<tr>
<th>Dose Level 1</th>
<th>Dose Level 2</th>
<th>Dose Level 3</th>
<th>Dose Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=3</td>
<td>N=3</td>
<td>N=2</td>
<td>N=6</td>
</tr>
</tbody>
</table>

- **Prime**
 - ChAdV Vector

- **Boost**
 - Self-Amplifying RNA

Ipilimumab (SC)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>30 mg</th>
<th>30 mg</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nivolumab (IV)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>480 mg</td>
<td></td>
</tr>
</tbody>
</table>

GRT-C901

GRT-R902 (dose escalation)

Phase 2

Efficacy Evaluation in Tumor-Specific Expansion Cohorts
N=12 (treated to date)

- **Cohort 1:**
 - *Microsatellite-stable Colorectal Cancer (MSS-CRC)*

- **Cohort 2:**
 - *Gastroesophageal adenocarcinoma (GEA)*

- **Cohort 3:**
 - *Non-small cell lung cancer*

Primary Objective

- **Safety and Tolerability**
- **Phase 2: Overall Response Rate**
- **Recommended Phase 2 Dose**

*GR-C901 = chimpanzee adenovirus encoding 20 neoantigens
GR-T-R902 = self-amplifying mRNA in lipid nanoparticles encoding same neoantigens as GR-C901*
Safety: Immunotherapy Well-Tolerated In Patients with Previously Treated Metastatic Solid Tumors

No patients experienced a DLT, no vaccine discontinuations due to TRAEs, and most common AEs comprise low-grade fever and injections site reactions, consistent with potent vaccine.

Demographics and Tumor Types

<table>
<thead>
<tr>
<th></th>
<th>n=26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: mean (range)</td>
<td>60 (38-77)</td>
</tr>
<tr>
<td>Gender: Female/Male</td>
<td>9/17</td>
</tr>
<tr>
<td>Tumor Types</td>
<td></td>
</tr>
<tr>
<td>Microsatellite-stable (MSS) Colorectal Cancer</td>
<td>12</td>
</tr>
<tr>
<td>Median number of prior therapies (range)</td>
<td>2 (2-3)</td>
</tr>
<tr>
<td>Gastroesophageal adenocarcinoma (GEA)</td>
<td>12</td>
</tr>
<tr>
<td>Median number of prior therapies (range)</td>
<td>1 (1-2)</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td>2</td>
</tr>
<tr>
<td>Median number of prior therapies (range)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Prior anti-PD(L)1 therapy</td>
<td>2</td>
</tr>
</tbody>
</table>

Safety

<table>
<thead>
<tr>
<th></th>
<th>Grade 1/2</th>
<th>Grade 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment-related adverse events ≥ 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Injection site reaction</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Anorexia</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chills</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ALT increased</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AST increased</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CK elevation</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Treatment-related SAEs

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Duodenitis</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Fever</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Myositis</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Data cut-off: 05 Aug 2021

Abbreviations: DLT=dose-limiting toxicity; TRAE=treatment-related adverse event; ISR=injection-site reaction
MSS-CRC & GEA Tumors in GRANITE are “Cold” with No Immune Reactivity

Low tumor mutational burden, low PD-L1 expression, and low IFN-γ expression signature

PD-L1 mRNA expression vs. Tumor Mutational Burden

Interferon Gamma (IFN-γ) mRNA expression signature

TMB calculated based on all somatic mutations called divided by WES bait set size

IFN-γ score was obtained by averaging IFN-γ established gene set z-scores calculated across GRANITE and relevant PANCAN TCGA tissue types (LUAD, LUSC, COAD, SKCM): J Clin Invest. 2017;127(8):2930-2940
Immunogenicity: GRANITE Consistently Induces Neoantigen-specific T-cells

Lack of T cells in patients prior to treatment reflective of poor immunogenicity

ex vivo ELISpot

Baseline

On-Treatment

G5: no samples available (patient died)
Efficacy: Clinical Activity in Previously Treated MSS-CRC Based on Partial and Complete Molecular Responses and Associated Prolonged PFS

Tumor lesion shrinkage also observed in multiple patients - often over many months

Best ctDNA molecular response (% ctDNA change from baseline)1,2

- SD per RECIST for ≥ 24 weeks3
- PD < 24 weeks

1. ctDNA assessment based on Gritstone-developed, tumor-informed assay
2. ctDNA assessment not available for the 3 most recently treated patients
3. Patients G14 and G16 with PD at week 16 and 9 respectively not confirmed on subsequent scans through week 24

SD=stable disease; PD=progressive disease
Efficacy: Molecular Response (ctDNA reduction) is Associated with Increased OS (>17 vs 7.8 months)

<table>
<thead>
<tr>
<th>MSS-CRC</th>
<th>All (n=12)</th>
<th>No Molecular Response (n=5)</th>
<th>Molecular Response (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Overall Survival (months)</td>
<td>8.7</td>
<td>7.8</td>
<td>Not reached (>17)</td>
</tr>
<tr>
<td>Median iPFS per iRECIST (months)</td>
<td>3.9</td>
<td>2.0</td>
<td>11.8</td>
</tr>
<tr>
<td>Median PFS per RECIST (months)</td>
<td>2.0</td>
<td>2.0</td>
<td>4.9</td>
</tr>
</tbody>
</table>

1. 12 MSS-CRC patients treated; 9 patients eligible for analysis of ctDNA changes relative to baseline

Data cut-off 05 Aug 2021

i=immune-based; PFS = progression-free survival; RECIST=Response Evaluation Criteria in Solid Tumors
Efficacy: Prolonged PFS in Patients with Previously Treated MSS-CRC

Compares favorably to equivalent patients treated with (now approved) regorafenib in the CORRECT study in patients with 3rd line MSS-CRC

Data cut-off 05 Aug 2021

Adapted from Grothey et al. Lancet 2013
Efficacy: Traditional RECIST Assessment Demonstrates a Complete Response (CR) in GEA and Multiple Patients with Stable Disease in MSS-CRC

<table>
<thead>
<tr>
<th>Overall Response Rate per RECIST Criteria</th>
<th>All N=22(^1)</th>
<th>MSS-CRC N=11</th>
<th>GEA N=9</th>
<th>NSCLC N=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/PR</td>
<td>1 (CR, 4%)</td>
<td>0</td>
<td>1 (CR, 11%)</td>
<td>0</td>
</tr>
<tr>
<td>Stable Disease (SD)</td>
<td>5 (23%)</td>
<td>4 (36%)</td>
<td>1 (11%)</td>
<td>0</td>
</tr>
<tr>
<td>Progressive Disease (PD)</td>
<td>16 (73%)</td>
<td>7 (64%)(^2)</td>
<td>7 (78%)</td>
<td>2 (100%)</td>
</tr>
</tbody>
</table>

1. Two patients had no evaluable disease at time of vaccine availability
2. In patients treated beyond PD, 4 patients did not have confirmed progression at the next scan
Study GO-010: Randomized Phase 2/3 in 1L Maintenance Metastatic MSS-CRC

Integrated Phase 2/3 randomized trial - open label phase 2 followed by pivotal phase 3

Inclusion Criteria
- Untreated stage IV CRC
- Microsatellite-stable
- BRAF^{wt}
- Planned for treatment with FOLFOX + bevacizumab

Induction
- Oxaliplatin + Fluoropyrimidine + bevacizumab

Maintenance
- Vaccine* + anti PD-(L)1 + Fluoropyrimidine + bevacizumab
- Fluoropyrimidine + bevacizumab

*Vaccine = ChAdV prime + anti-CTLA-4 followed by repeat SAM boosts and single ChAdV boost

Primary Endpoint
- Phase 3: iPFS per independent review*
- Phase 2: Molecular response (decrease in ctDNA)

Secondary Endpoint
- Phase 2: PFS
- OS
- ORR (eg, conversion from SD to PR, PR to CR)
- Safety
- Immunogenicity

Phase 2 (open-label): N=40-80
Phase 3: N=~200
Study GO-008: Randomized, Controlled Phase 2 Study in Post-Adjuvant Chemo Colon Cancer Patients with Minimal Residual Disease by ctDNA

Diagnosis
High-risk Stage II and III Colon Cancer

Surgery
2-8 weeks post surgery until initiation of adjuvant chemotherapy

Blood

ctDNA?

sufficient predicted neoantigens?

GRANITE Manufacture

Arm A: ChAdV with anti-CTLA-4 followed with SAM RNA Boosts + anti PD-(L)1

Arm B: Observation

End-points
- ctDNA
- DFS
- OS

DFR=disease-free survival; OS= overall survival; R=randomize
SLATE Highlights

“Off-the-Shelf” Shared Neoantigen Targeted Immunotherapy

Safety & Tolerability

• Heterologous prime-boost neoantigen directed therapy is well-tolerated; no dose limiting toxicities

Efficacy

• Clear evidence of SLATE v1 efficacy in multiple NSCLC patients who had all progressed on prior anti-PD-1 mAb therapy (often in combination with chemotherapy)
• Greatest activity observed in 6 patients with the KRASmut G12C-HLA A*02:01 complex
• ctDNA responses observed in 66% of these patients, correlating with clinical benefit
• RECIST response (unconfirmed) observed in 1 patient

Clinical Development Strategy

• A new SLATE cassette (v2) including only multiple copies of KRAS mutations, superior in preclinical testing, is now in phase 2 testing in patients with advanced NSCLC and CRC
SLATE Product Targeting KRAS Mutants

One Product - Many Selected Patients

Common Driver Mutation

- KRAS
 - G12D
 - G12C
 - G12V
 - Q61H

Class I HLA Molecule

- HLA - A
 - A* 01:01
 - A* 02:01
 - A* 11:01

- HLA - C
 - C* 01:02
 - C* 08:02

SLATE Patient Selection for KRAS mutations

- Lung Adeno
 - SLATE Eligible
 - KRAS Mutation

- CRC
 - SLATE Eligible
 - KRAS Mutation

- PDA
 - SLATE Eligible
 - KRAS Mutation

Pancreatic Ductal Adenocarcinoma
Safety: Immunotherapy Well-Tolerated In Patients with Previously Treated Metastatic Solid Tumors

SLATE Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n=26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: mean (range)</td>
<td>59 (33-83)</td>
</tr>
<tr>
<td>Gender: Female/Male</td>
<td>16/10</td>
</tr>
</tbody>
</table>

Tumor Types

- **Non-small cell lung cancer**: 13 patients
 - Median number of prior therapies (range): 2 (1-4)
 - Prior anti-PD-(L)1 therapy: 13
- **Microsatellite-stable (MSS) Colorectal Cancer**: 6 patients
 - Median number of prior therapies (range): 2 (1-3)
- **Pancreatic ductal adenocarcinoma (PDA)**: 5 patients
 - Median number of prior therapies (range): 1 (1-3)
- **Ovarian cancer**: 1 patient
 - Median number of prior therapies (range): 4
- **Ampullary adenocarcinoma**: 1 patient
 - Prior anti-PD-(L)1 therapy: 5

Safety

<table>
<thead>
<tr>
<th>Event</th>
<th>Grade 1/2</th>
<th>Grade 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment-related adverse events ≥ 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Injection site reaction</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Arthralgia</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ALT increased</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AST increased</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anorexia</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chills</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Generalized weakness</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Myalgia</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pruritus</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Grade 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment-related SAEs</td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>2</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>1</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>1</td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>1</td>
</tr>
<tr>
<td>Rhabdomyolysis</td>
<td>1</td>
</tr>
<tr>
<td>Vomiting</td>
<td>1</td>
</tr>
</tbody>
</table>

Data cut-off: 05 Aug 2021
Efficacy (2): Several Patients with NSCLC Have Decrease in ctDNA Including Patient with High Baseline Levels

<table>
<thead>
<tr>
<th>Patient</th>
<th>Mutation</th>
<th>Baseline ctDNA (mutated hGE/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>G12C</td>
<td>124.64</td>
</tr>
<tr>
<td>S2</td>
<td>G12C</td>
<td>26.92</td>
</tr>
<tr>
<td>S3</td>
<td>G12C</td>
<td>Not detectable</td>
</tr>
<tr>
<td>S10</td>
<td>Q61H</td>
<td>77.23</td>
</tr>
<tr>
<td>S14</td>
<td>G12D</td>
<td>Not detectable</td>
</tr>
<tr>
<td>S26</td>
<td>G12C</td>
<td>3386.05</td>
</tr>
</tbody>
</table>

% change from baseline (mutated hGE/mL)

- Treatment ≥ 12 weeks
- Treatment ≤ 8 weeks

NSCLC SLATE Patients
Efficacy (3): Prolonged Disease Control in Patients with KRAS G12C NSCLC

PFS in patients who all received prior IO reflects enhanced disease control relative to most recent prior therapy

<table>
<thead>
<tr>
<th>Patient</th>
<th>Immediate Prior Therapy</th>
<th>PFS2/PFS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Chemo</td>
<td>1</td>
</tr>
<tr>
<td>S2</td>
<td>Radiation/chemo</td>
<td>3</td>
</tr>
<tr>
<td>S3</td>
<td>Pembro/chemo</td>
<td>2.9</td>
</tr>
<tr>
<td>S24</td>
<td>Chemo</td>
<td>0.1</td>
</tr>
<tr>
<td>S25</td>
<td>Chemo</td>
<td>0.2</td>
</tr>
<tr>
<td>S26</td>
<td>Pembro/Chemo</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Efficacy: Traditional RECIST Assessment Demonstrates an Unconfirmed Partial Response and Several Patients with Stable Disease in NSCLC

<table>
<thead>
<tr>
<th>Overall Response Rate per RECIST</th>
<th>All N=26</th>
<th>NSCLC N=13</th>
<th>MSS-CRC N=6</th>
<th>PDA N=5</th>
<th>Other N=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/PR</td>
<td>1(^1) (4%)</td>
<td>1(^1) (8%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stable Disease (SD)</td>
<td>4 (15%)</td>
<td>3 (23%)</td>
<td>0</td>
<td>1 (20%)</td>
<td>0</td>
</tr>
<tr>
<td>Progressive Disease (PD)</td>
<td>21 (81%)</td>
<td>9 (69%)</td>
<td>6 (100%)</td>
<td>4 (80%)</td>
<td>2 (100%)</td>
</tr>
</tbody>
</table>

1. Unconfirmed PR at 16 weeks; progression of non-target lesions (spinal lesion)
SLATE: Version 2 of the \textit{KRAS}^{mut} Antigenic Cassette Induces Potent T-Cell Responses to Multiple KRAS Neoantigens - Phase 2 Trial Underway

\textit{No T-cell response was observed in these transgenic mice with SLATE cassette version 1}

HLA-A11 Transgenic mice

![Graph showing T-cell response to peptide pool stimulation](image)

Overnight stimulation with peptide pool containing 38 minimal epitopes. Background subtracted.

Phase 2

\textbf{Efficacy Evaluation in Tumor-Specific Expansion Cohorts}

- **Cohort 1:** \textit{CRC 1L M (n=20)}
- **Cohort 2:** \textit{CRC 3L (n=20)}
- **Cohort 3:** \textit{NSCLC post-IO (n=20)}

Prime

- \textit{ChAdV vector}
- \textit{GRT-C903}

Boost

- \textit{Self-Amplifying mRNA}
- \textit{GRT-R904}
- \text{Iplimumab (SC)}
- \text{Nivolumab (IV)}
Neoantigen Derived Cancer Immunotherapy

Individualized and “Off the Shelf”
Gritstone Has its Own Fully Insourced Biomanufacturing Facility

43,000 sq. ft. manufacturing and testing facility in Pleasanton, CA

LNP = Lipid Nanoparticles

Plasmid
ChAdV
SAM
LNP, Fill/Finish

Tumor sequencing

2020: All Manufacturing Insourced
Key Financial Highlights

Three Months Ended June 30, 2021

- **Cash, Cash Equivalents, Marketable Securities, Restricted Cash**: $176.2MM*
- **Research and Development Expenses**: $22.1MM
- **General and Administrative Expenses**: $5.9MM

*does not include $55M PIPE transaction in Sept 2021
Key Upcoming Milestones

Near-term catalysts provide multiple value inflection points for GRTS

Present GRANITE Ph1/2 Data at ESMO ✓
Advance SLATE: Initiate KRAS v2 Study & Present v1 Data ✓
Initiate GRTS-sponsored CORAL Boost Clinical Study ✓

Share initial NIAID-IDCRC Ph1 CORAL Vaccine Data
Initiate GRTS-sponsored CORAL Trial in Immunocompromised Individuals
Initiate GRTS-CEPI Trial in South Africa
SLATE v3 (unnamed target) IND submission

Initiate GRANITE Randomized Ph2/3 Trial in 1L maintenance MSS-CRC
Share initial data from GRTS sponsored booster trial in 60+ (UK)

Initiate GRANITE Randomized Phase 2 trial in adjuvant setting for Stage II/III MSS-CRC
Share SLATE v2 Preliminary Data (mid-2022)