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Background
• Accurate prediction of T-cell targets is critical to the development of 

potent, T-cell inducing vaccines.
• Computational prediction of peptide-HLA complexes which serve as T 

cell targets, is highly desired.
• EDGETM (Epitope Discovery for GEnomes) is an artificial intelligence-

based platform that provides state-of-the-art models for predicting the 
cell-surface peptide presentation by HLA molecules.

• A model for predicting peptide presentation by HLA Class I with a 
PPV40 of 0.53 (10-fold improvement vs. standard tools) was published 
in Nature Biotech in 2018 [1].

• EDGE is now comprised of improved models trained for predicting 
peptides presented by HLA Class I or HLA Class II and geared toward 
oncology or infectious disease applications.

• The models are  also predictive of CD8 and CD4 T-cell 
immunogenicity.

EDGE Models: HLA Class I (Oncology)
• EDGE models for HLA Class I and oncology application are trained 

using human mono-allelic cell lines and multi-allelic tissue Class I 
immunopeptidomics data.

• The models consistently outperform MHCFlurry 2.0 [9].
• Allele-specific model is an improved version of published 2018 EDGE 

model that predicts for 116 HLA alleles with available inhouse training 
data [1].

• The Allele-specific model achieves an Average Precision (AP) of 0.63 
and Positive Predictive Value at 40% Recall (PPV40) of 0.79.

• The Pan-specific model uses HLA allele’s sequence while training and 
is therefore applicable to any Class I allele with known sequence.

• The Pan-specific model achieves an AP of 0.65 and PPV40 of 0.81.

EDGE Predicts Immunogenicity

Figure 3. Performance benchmarking of EDGE model for infectious diseases (EDGE-ID) as 
compared to EDGE for oncology and MHCFlurry 2.0 This benchmark was done on a per-allele basis 
for each HLA allele in the dataset. Alleles were chosen based upon the number of positives available. 
The benchmarking datasets were withheld from our training and validation. MHCFlurry was trained 
with the data from the benchmarking dataset.

Figure 2A. EDGE consistently ranks twice as many or more immunogenic mutations in the top 𝑛 
ordered by sum of non-self epitope scores. Figure 2B. Immunogenic mutations are assessed in each 
personalized cancer vaccine using ELISPOT-based individual peptide deconvolution.

• EDGE does not specifically model immunogenicity but performs well at 
predicting immunogenic peptides.

• When ranking mutations from 80 cancer patients [2,3,4] based on 
immunogenicity, EDGE consistently performs two-fold better than MHCFlurry 
2.0 [9].

• In five patients that were treated with Gritstone’s personalized cancer vaccines 
(NCT03639714) containing the top 20 mutations selected by EDGE, ≥ 50% of 
mutations per patient generated a detectable CD8 response [5].

• Infectious diseases EDGE model was trained using a mixture of human 
immunopeptidomics dataset and infectious disease binding affinity data [6].

• The model was tested on a collection of publicly available datasets from 
infectious diseases (HIV [6,7], Influenza A [6], and SARS-CoV-2 [6,8]) held out 
during training.

• Optimizing EDGE for use on infectious diseases results in improved 
performance.

• On the HIV and Influenza A datasets, it performs better than the MHCFlurry 2.0; 
on SARS-CoV-2 dataset, their performance is comparable.

• EDGE model for Class II, termed EDGE-II, uses a pretrained protein language 
model, a novel learned HLA allele-deconvolution strategy, and in-house 
immunopeptidomics training data.

• EDGE-II achieves a test set AP of 0.92 and outperforms NetMHCIIpan and 
BERTMHC [10,11] on an externally curated validation set [10] with an AP = 
0.71.

• CD4 immunogenicity in a personalized cancer vaccine context [13] is better 
predicted by EDGE-II than NetMHCIIpan and MARIA [10,12].

Figure 4A. Schematic of the EDGE-II model. Figure 4B. Performance of EDGE-II and public tools on 
an external validation dataset. Figure 4C. Correlation of model scores with CD4 immunogenicity on the 
Ott et al. personalized cancer vaccine dataset [13].

• EDGE is a state-of-the-art AI platform for predicting T-cell targets for 
oncology and infectious diseases applications.

• For oncology, it contains two models (allele-specific and pan-specific) for 
predicting Class I and one model (EDGE-II) for predicting Class II antigens.

• A model for predicting Class I antigens for infectious diseases (EDGE-ID) 
benefits from training on binding affinity data in addition to the 
immunopeptidomics data.

• Superior performance and association with immunogenicity is achieved by all 
models.

• EDGE could enable development of vaccines that can elicit a robust T-cell 
response resulting in durable patient response. 

EDGE Model: HLA Class II (Oncology)

Conclusions

EDGE Model: HLA Class I (Infectious Diseases)

Model ROC AP

BERTMHC .956 .807

NetMHCIIpan4.0 .954* .810*

EDGE (max) .959 .832

EDGE (learned MIL 
network)

.965 .857

EDGE (full model) .984 .933
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Figure 1A. Schematic of the EDGE 
model. Figure 1B. ROC curves 
comparing performance of EDGE 
models vs. MHCFlurry Figure 1C. PR 
curves comparing performance of EDGE 
models vs MHCFlurry
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Model AP PPV40
EDGE (allele-specific) 0.63 0.79
EDGE (pan-specific) 0.65 0.81
MHCFlurry (binding affinity) 0.10 0.14
MHCFlurry (presentation) 0.21 0.27
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