Personalized, off-the-shelf KRAS neoantigen-specific immunotherapy for the treatment of advanced solid tumors: Clinical benefit associated with decreases in ctDNA (SLATE-KRAS)

Chrisann Kyi¹, Alexander I. Spira², Chih-Yi Liao³, Ardaman Shergill³, Melissa Lynne Johnson⁴, Brian S. Henick⁵, David Paul Carbone⁶, Hossein Borghaei⁷, Benny Johnson⁸, Regan M. Memmott⁶, Carolyn J. Presley⁶, Amit Mahipal⁹, J. Randolph Hecht ¹⁰, Daniel V.T. Catenacci³, Jason R. Jaroslavsky¹¹ Desiree Schenk¹¹, Karin Jooss¹¹, Andrew R. Ferguson¹¹, Jonathan W. Goldman¹⁰

¹Memorial Sloan Kettering Cancer Center, New York, NY; ²Virginia Cancer Specialists, Fairfax, VA; ³University of Chicago Medical Center and Biological Sciences, Chicago, IL; ⁴Sarah Cannon Research Institute, Nashville, TN ⁵Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY; ⁶The Ohio State University Comprehensive Cancer Center, Columbus, OH; ⁷Fox Chase Cancer Center, Philadelphia, PA; ⁸MD Anderson Cancer Center, Houston, TX; ⁹Mayo Clinic, Rochester, MN; ¹⁰University of California-Los Angeles, Los Angeles, CA; ¹¹Gritstone bio, Inc. Emeryville, CA.

DECLARATION OF INTERESTS

Chrisann Kyi, MD

CONSULTING/ADVISORY ROLE

- OncLive®
- Scenic Immunology B.V.

Research Funding to Institution: Bristol Myers Squibb, Merus, and Gritstone bio, Inc.

Study sponsored by Gritstone bio, Inc.

SLATE: Delivering Shared Neoantigens Using an Off-the-Shelf, Heterologous Prime-Boost Vaccine Platform; Evolving to Target KRAS Neoantigens Exclusively

Presented by: Chrisann Kyi, MD

Study Design: SLATE/GO-005: Phase 1/2 Study Evaluating the Safety, Immunogenicity, and Clinical Activity of Shared Neoantigen Vaccines in Combination with Immune Checkpoint Blockade (ICB)

INCLUSION REQUIREMENT (illustrative examples)	PHASE 1: DOSE ESCALATION	PHASE 2: EXPANSION Efficacy in Solid Tumors	PRIMARY OBJECTIVES
KRAS HLA A* 01:01 A* 02:01 G12D A* 11:01 G12V A* 03:01 G12H C* 01:02 Q61H C* 08:02	Up to 4 Dose Levels Prime: 10 ¹² vp ChAd Boost : 30 → 300 ug samRNA +/- 30 mg Ipilimumab (subcutaneous) + 480 mg Nivolumab (intravenous)	Cohort 1: MSS-CRC-1L maintenance Cohort 2: MSS-CRC Cohort 3: NSCLC- Post ICB Cohort 4-6 : Other tumor types	Safety and Tolerability Phase 2: Overall Response Rate Recommended Phase 2 Dose
MSS-CRC= Microsatellite-stable Colorectal Cancer NSCLC= Non-small cell lung cancer PARIS 2022	COMPLETED N= 19	ONGOING N=19 (n=7 with v1; n=12 with SLATE-KRAS)	v of the author. Permission is required

Presented by: Chrisann Kyi, MD

for re-use

Demographics: Patients Enriched for NSCLC (post-ICB) and MSS-CRC (post-FOLFOX/FOLFIRI)

Demographics and Tumor Type	Version 1 N=26	SLATE-KRAS N=12	Overall N= 38
Age: mean years (min, max)	60 (33, 83)	59 (36, 86)	60 (33,86)
Gender (Male/Female)	10/16	4/8	14/24
Tumor Types			
Non-small Cell Lung Cancer (NSCLC)	13	5	18
No. Prior therapy (median, range)	1 (1-4)	2 (1-3)	1.5 (1-4)
Prior anti-PD-(L)1 therapy	13	5	18
Microsatellite-Stable (MSS) Colorectal Cancer	6	7	13
No. Prior therapy (median, range)	1.5 (1-2)	1 (1-2)	1 (1-2)
No. Prior Oxaliplatin/Irinotecan	6	6	12
Pancreatic Ductal Adenocarcinoma (PDA)	5	0	5
No. Prior therapy (median, range)	1 (1-3)	0	1 (1-3)
Other	2	0	2
No. Prior therapy (median, range)	3 (3)	0	3 (3)

Data cut-off for this presentation: 20 June 2022

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Safety: Treatment-Related AEs by SLATE v1 and SLATE-KRAS (> 10%) in Previously Treated Metastatic Solid Tumor Patients

	v1 (n=26)		SLATE-KRAS (n=12)		Overall (n=38)
Preferred Terms; n(%)	Grade 1/ 2	≥Grade 3	Grade 1/2	≥Grade 3	All Grades
Pyrexia	14(53.8)	0.0	3(25.0)	0.0	17(44.7)
Fatigue	8(30.8)	1(3.8)	2(16.7)	0.0	11(28.9)
Nausea	6(23.1)	0.0	3(25.0)	0.0	9(23.7)
Vomiting	7(26.9)	0.0	1(8.3)	0.0	8(21.1)
Chills	3(11.5)	0.0	4(33.3)	0.0	7(18.4)
Diarrhoea	5(19.2)	0.0	1(8.3)	0.0	6(15.8)
Myalgia	2(7.7)	0.0	3(25.0)	0.0	5(13.2)
Decreased appetite	2(7.7)	0.0	2(16.7)	0.0	4(10.5)
Injection site pain	2(7.7)	0.0	2(16.7)	0.0	4(10.5)
Injection site reaction	4(15.4)	0.0	0.00	0.0	4(10.5)

Treatment-related Grade 3/4 AEs with frequency <10%:

- With v1, one patient experienced transient Grade 3 increase in alanine aminotransferase and aspartate aminotransferase
- With v1, one patient had Grade 3 confusional state associated with pyrexia

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Immunogenicity: Induction of KRAS-specific CD8⁺ T cells increased with SLATE-KRAS relative to SLATE v1 based on IFNg ELISpot

SLATE-KRAS increase in number of patients with a positive ELISpot response as well as in the median number of spots

Ex vivo IFN_Y ELISpot

* Ex vivo assay using minimal peptides performed on available samples

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Efficacy in NSCLC: Early Signals of Durability and Molecular Response in NSCLC Post-ICB

Presented by: Chrisann Kyi, MD

PD= Progressive Disease; VAF = variant allele frequency

Overall Survival: Trend of Improved Overall Survival in Patients with NSCLC Treated with SLATE-KRAS or SLATE v1 Achieving a Molecular Response Compared to Those Without

Molecular response = reduction in ctDNA \ge 30% from baseline

NA = Not achievable

PARIS ESVO

Presented by: Chrisann Kyi, MD

Efficacy in CRC: Early Signal of Durability and Molecular Response in Late-Stage CRC

Patient had progressive disease; incompletely captured in clinical database at time of data cut-off

PD= Progressive Disease; VAF = variant allele frequency

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Patient Spotlight S37: 64 yo Female CRC Patient: Molecular Response More Sensitive Indicator of Clinical Benefit over RECIST

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Presented by: Chrisann Kyi, MD

PARIS 2022

Conclusions and Future Directions

Safety and Tolerability

• Heterologous prime-boost neoantigen directed v1 and SLATE-KRAS is well-tolerated in advanced solid cancer patients

Mechanistic Insights

- SLATE vaccine is capable of eliciting KRAS neoantigen-specific CD8⁺ T cell responses.
- Evidence of immune infiltration into tumor tissue following study treatment (tumor RNAseq data not shown)
- SLATE-KRAS specific cassette elicits stronger CD8⁺ T cell responses to KRAS mutants compared to v1

Clinical Benefit

- Early evidence of efficacy with both SLATE vaccines in patients with NSCLC who progressed on standard of care with prior anti-PD-(L)1 therapy
 - Molecular (ctDNA) response correlates with improved overall survival
- Molecular response (reduction in ctDNA*) observed in 39% (7/18) of patients with CRC and NSCLC preceding clinical benefit
- Molecular and clinical benefit in patient with KRAS G12V mutant CRC who progressed on 2 prior therapies
- Molecular response may be a superior biomarker of benefit versus RECIST radiology with this novel immunotherapy

Enrollment and treatment continues; results suggest targeting earlier lines of therapy may be beneficial

*Patients with detectable ctDNA at baseline and at least 1 post-baseline sample

ACKNOWLEDGEMENTS

- Patients and their families
- SLATE Investigators, research nurses, study coordinators, and site staff
- Gritstone bio, Inc. staff supporting the study
- Bristol-Myers Squibb for supply of nivolumab and ipilimumab

