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Background
• Epitope prediction for Gritstone’s personalized cancer vaccines

(PCV) has relied upon HLA Class I epitope presentation prediction

using our EDGETM platform.

• CD4+ T cells likely augment CD8+ T cell responses, and non-

specific CD4 epitopes are currently deployed in the Gritstone PCV.

• Combination of tumor neoantigen-specific Class II and Class I

epitopes may augment PCV immunogenicity and efficacy.

• Current models for epitope prediction perform better for Class I

than Class II – a superior model for the latter is needed.

• Here, we introduce a new addition to EDGE: a state-of-the-art

model for the prediction of the presentation of peptides by HLA

Class II.

Approach

• EDGETM leverages the pretrained protein sequence embeddings

from the “Evolutionary Scale Model” (ESM2) language model.

• A learned genotype network (“LGN”) is used to aggregate

embeddings from all alleles prior to prediction, rather than after.

• Immunoaffinity purified mass spectrometry data was used to refine

EDGE’s sequence predictions prior to training the LGN.

Figure 1. EDGE architecture for prediction of class II epitope

presentation probabilities over full HLA class II genotypes.

Results

Figure 3. The LGN of EDGE places increased weight on individual alleles when

an epitope is presented. Decrease in entropy in true positive samples indicates

less uniform weights across alleles.

Figure 2. A) EDGE achieves superior performance to prior models and

improves its performance on reference multi-allelic (MA) and single-allelic (SA)

data. B) Substantial increase in AP on an independent test set of presentation

data. C) LGN causes EDGE to substantially outperform other models on MA

data.

• EDGE trained and evaluated on the class II Reynisson et al. dataset

substantially improves ROC-AUC and Average Precision/PPV (AP) over

existing methods [3,4].

• The LGN allows all alleles in a genotype to contribute to the gradient during

backpropagation, as opposed to the max operator.

• Inclusion of the LGN in EDGE improves predictive power on multi-allelic

data over selecting the highest scoring allele (max).

• EDGE does not simply learn the mean of all the alleles present in a sample’s

genotype but rather selectively identifies alleles that are likely to present.

• Publicly available data were collected from two personalized neoantigen

vaccine studies with class II restricted epitopes and ELISPOT response data.

• EDGE score (logit) was significantly predictive of immunogenic response,

particularly for scores greater than zero.

Figure 4. A) Peptides ranked by EDGE score and colored by their positive or

negative CD4+ response. B) Posterior distribution of logistic coefficient

demonstrates that EDGE is predictive of immunogenicity in personalized mRNA

vaccines (upper), and this association is particularly strong for high scoring

peptides (lower). C) Posterior predictive distribution indicates relatively low

scoring peptides have immunogenic potential.

• The new addition to Gritstone's EDGETM platform significantly improves

performance over prior HLA class II peptide presentation models.

• On independent data, prior methods would select Class II epitopes with Avg.

PPV of 62%, whereas our new EDGE model would have Avg. PPV of 77%.

• In a PCV context, despite EDGE not being trained to predict immunogenicity

(training in progress currently), EDGE predicts immunogenic class II epitopes

with an Avg. PPV of 47%.

• This advance is likely to lead to superior PCV antigenic composition over

current approaches.
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